Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.825
Filtrar
1.
Database (Oxford) ; 20242024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602506

RESUMO

Short Tandem Repeats (STRs) are genetic markers made up of repeating DNA sequences. The variations of the STRs are widely studied in forensic analysis, population studies and genetic testing for a variety of neuromuscular disorders. Understanding polymorphic STR variation and its cause is crucial for deciphering genetic information and finding links to various disorders. In this paper, we present STRIDE-DB, a novel and unique platform to explore STR Instability and its Phenotypic Relevance, and a comprehensive database of STRs in the human genome. We utilized RepeatMasker to identify all the STRs in the human genome (hg19) and combined it with frequency data from the 1000 Genomes Project. STRIDE-DB, a user-friendly resource, plays a pivotal role in investigating the relationship between STR variation, instability and phenotype. By harnessing data from genome-wide association studies (GWAS), ClinVar database, Alu loci, Haploblocks in genome and Conservation of the STRs, it serves as an important tool for researchers exploring the variability of STRs in the human genome and its direct impact on phenotypes. STRIDE-DB has its broad applicability and significance in various research domains like forensic sciences and other repeat expansion disorders. Database URL: https://stridedb.igib.res.in.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Genoma Humano/genética , Fenótipo , Repetições de Microssatélites/genética , Bases de Dados Factuais
2.
PLoS Genet ; 20(3): e1011144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507461

RESUMO

Across the human genome, there are large-scale fluctuations in genetic diversity caused by the indirect effects of selection. This "linked selection signal" reflects the impact of selection according to the physical placement of functional regions and recombination rates along chromosomes. Previous work has shown that purifying selection acting against the steady influx of new deleterious mutations at functional portions of the genome shapes patterns of genomic variation. To date, statistical efforts to estimate purifying selection parameters from linked selection models have relied on classic Background Selection theory, which is only applicable when new mutations are so deleterious that they cannot fix in the population. Here, we develop a statistical method based on a quantitative genetics view of linked selection, that models how polygenic additive fitness variance distributed along the genome increases the rate of stochastic allele frequency change. By jointly predicting the equilibrium fitness variance and substitution rate due to both strong and weakly deleterious mutations, we estimate the distribution of fitness effects (DFE) and mutation rate across three geographically distinct human samples. While our model can accommodate weaker selection, we find evidence of strong selection operating similarly across all human samples. Although our quantitative genetic model of linked selection fits better than previous models, substitution rates of the most constrained sites disagree with observed divergence levels. We find that a model incorporating selective interference better predicts observed divergence in conserved regions, but overall our results suggest uncertainty remains about the processes generating fitness variation in humans.


Assuntos
Modelos Genéticos , Seleção Genética , Humanos , Evolução Molecular , Frequência do Gene/genética , Mutação , Genoma Humano/genética , Variação Genética , Aptidão Genética
3.
Mol Genet Genomics ; 299(1): 37, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494535

RESUMO

Identity by descent (IBD) segments, uninterrupted DNA segments derived from the same ancestral chromosomes, are widely used as indicators of relationships in genetics. A great deal of research focuses on IBD segments between related pairs, while the statistical analyses of segments in irrelevant individuals are rare. In this study, we investigated the basic informative features of IBD segments in unrelated pairs in Chinese populations from the 1000 Genome Project. A total of 5922 IBD segments in Chinese interpopulation unrelated individual pairs were detected via IBIS and the average length of IBD was 3.71 Mb in length. It was found that 17.86% of unrelated pairs shared at least one IBD segment in the Chinese cohort. Furthermore, a total of 49 chromosomal regions where IBD segments clustered in high abundance were identified, which might be sharing hotspots in the human genome. Such regions could also be observed in other ancestry populations, which implies that similar IBD backgrounds also exist. Altogether, these results demonstrated the distribution of common background IBD segments, which helps improve the accuracy in pedigree studies based on IBD analysis.


Assuntos
Povo Asiático , Genoma Humano , Humanos , Povo Asiático/genética , Genoma Humano/genética , Linhagem , Projetos de Pesquisa , China
4.
PLoS One ; 19(2): e0292479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38349923

RESUMO

Recombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness. Here, we describe the directed evolution of novel lambda integrase variants capable of editing exogenous target sequences identified in the diatom Phaeodactylum tricornutum and the algae Nannochloropsis oceanica. These microorganisms hold great promise as conduits for green biomanufacturing and carbon sequestration. The evolved enzyme variants show >1000-fold switch in specificity towards the non-natural target sites when assayed in vitro. A single-copy target motif in the human genome with homology to the Nannochloropsis oceanica site can also be efficiently targeted using an engineered integrase, both in vitro and in human cells. The developed integrase variants represent useful additions to the DNA editing toolbox, with particular application for targeted genomic insertion of large DNA cargos.


Assuntos
Diatomáceas , Estramenópilas , Humanos , Integrases/genética , Genoma Humano/genética , DNA , Genômica , Diatomáceas/genética , Estramenópilas/genética , Edição de Genes
5.
Nature ; 627(8003): 340-346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374255

RESUMO

Comprehensively mapping the genetic basis of human disease across diverse individuals is a long-standing goal for the field of human genetics1-4. The All of Us Research Program is a longitudinal cohort study aiming to enrol a diverse group of at least one million individuals across the USA to accelerate biomedical research and improve human health5,6. Here we describe the programme's genomics data release of 245,388 clinical-grade genome sequences. This resource is unique in its diversity as 77% of participants are from communities that are historically under-represented in biomedical research and 46% are individuals from under-represented racial and ethnic minorities. All of Us identified more than 1 billion genetic variants, including more than 275 million previously unreported genetic variants, more than 3.9 million of which had coding consequences. Leveraging linkage between genomic data and the longitudinal electronic health record, we evaluated 3,724 genetic variants associated with 117 diseases and found high replication rates across both participants of European ancestry and participants of African ancestry. Summary-level data are publicly available, and individual-level data can be accessed by researchers through the All of Us Researcher Workbench using a unique data passport model with a median time from initial researcher registration to data access of 29 hours. We anticipate that this diverse dataset will advance the promise of genomic medicine for all.


Assuntos
Conjuntos de Dados como Assunto , Genética Médica , Genética Populacional , Genoma Humano , Genômica , Grupos Minoritários , Grupos Raciais , Humanos , Acesso à Informação , População Negra/genética , Registros Eletrônicos de Saúde , Etnicidade/genética , População Europeia/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genoma Humano/genética , Estudos Longitudinais , Grupos Raciais/genética , Reprodutibilidade dos Testes , Pesquisadores , Fatores de Tempo , Populações Vulneráveis
6.
Nature ; 627(8004): 586-593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355797

RESUMO

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Assuntos
Carcinoma Hepatocelular , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Hepáticas , Mutação , Sequenciamento Completo do Genoma , Humanos , Ácidos Aristolóquicos/metabolismo , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , China , Cromotripsia , Progressão da Doença , DNA Circular/genética , População do Leste Asiático/genética , Evolução Molecular , Genoma Humano/genética , Vírus da Hepatite B/genética , Mutação INDEL/genética , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Mutação/genética , Metástase Neoplásica/genética , Fases de Leitura Aberta/genética , Reprodutibilidade dos Testes
7.
Signal Transduct Target Ther ; 9(1): 47, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409199

RESUMO

Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Genoma Humano/genética , DNA
8.
Nature ; 625(7994): 329-337, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200294

RESUMO

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Assuntos
Genoma Humano , Genômica , Migração Humana , Populações Escandinavas e Nórdicas , Humanos , Dinamarca/etnologia , Emigrantes e Imigrantes/história , Genótipo , Populações Escandinavas e Nórdicas/genética , Populações Escandinavas e Nórdicas/história , Migração Humana/história , Genoma Humano/genética , História Antiga , Pólen , Dieta/história , Caça/história , Fazendeiros/história , Cultura , Fenótipo , Conjuntos de Dados como Assunto
9.
Nature ; 625(7994): 312-320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200293

RESUMO

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Assuntos
Asiático , População Europeia , Genoma Humano , Seleção Genética , Humanos , Afeto , Agricultura/história , Alelos , Doença de Alzheimer/genética , Ásia/etnologia , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , População Europeia/genética , Fazendeiros/história , Loci Gênicos/genética , Predisposição Genética para Doença , Genoma Humano/genética , História Antiga , Migração Humana , Caça/história , Família Multigênica/genética , Fenótipo , 60682 , Herança Multifatorial/genética
11.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38167611

RESUMO

Bulky DNA damages block transcription and compromise genome integrity and function. The cellular response to these damages includes global transcription shutdown. Still, active transcription is necessary for transcription-coupled repair and for induction of damage-response genes. To uncover common features of a general bulky DNA damage response, and to identify response-related transcripts that are expressed despite damage, we performed a systematic RNA-seq study comparing the transcriptional response to three independent damage-inducing agents: UV, the chemotherapy cisplatin, and benzo[a]pyrene, a component of cigarette smoke. Reduction in gene expression after damage was associated with higher damage rates, longer gene length, and low GC content. We identified genes with relatively higher expression after all three damage treatments, including NR4A2, a potential novel damage-response transcription factor. Up-regulated genes exhibit higher exon content that is associated with preferential repair, which could enable rapid damage removal and transcription restoration. The attenuated response to BPDE highlights that not all bulky damages elicit the same response. These findings frame gene architecture as a major determinant of the transcriptional response that is hardwired into the human genome.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA/genética , Dano ao DNA/genética , Benzo(a)pireno/farmacologia , Benzo(a)pireno/metabolismo , Regulação da Expressão Gênica/genética , Genoma Humano/genética
12.
Proc Natl Acad Sci U S A ; 121(2): e2316242120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165936

RESUMO

The genome of an individual from an admixed population consists of segments originated from different ancestral populations. Most existing ancestry inference approaches focus on calling these segments for the extant individual. In this paper, we present a general ancestry inference approach for inferring recent ancestors from an extant genome. Given the genome of an individual from a recently admixed population, our method can estimate the proportions of the genomes of the recent ancestors of this individual that originated from some ancestral populations. The key step of our method is the inference of ancestors (called founders) right after the formation of an admixed population. The inferred founders can then be used to infer the ancestry of recent ancestors of an extant individual. Our method is implemented in a computer program called PedMix2. To the best of our knowledge, there is no existing method that can practically infer ancestors beyond grandparents from an extant individual's genome. Results on both simulated and real data show that PedMix2 performs well in ancestry inference.


Assuntos
Genética Populacional , Avós , Humanos , Software , Genoma Humano/genética
13.
Nature ; 626(7999): 565-573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297123

RESUMO

Genomic research that targets large-scale, prospective birth cohorts constitutes an essential strategy for understanding the influence of genetics and environment on human health1. Nonetheless, such studies remain scarce, particularly in Asia. Here we present the phase I genome study of the Born in Guangzhou Cohort Study2 (BIGCS), which encompasses the sequencing and analysis of 4,053 Chinese individuals, primarily composed of trios or mother-infant duos residing in South China. Our analysis reveals novel genetic variants, a high-quality reference panel, and fine-scale local genetic structure within BIGCS. Notably, we identify previously unreported East Asian-specific genetic associations with maternal total bile acid, gestational weight gain and infant cord blood traits. Additionally, we observe prevalent age-specific genetic effects on lipid levels in mothers and infants. In an exploratory intergenerational Mendelian randomization analysis, we estimate the maternal putatively causal and fetal genetic effects of seven adult phenotypes on seven fetal growth-related measurements. These findings illuminate the genetic links between maternal and early-life traits in an East Asian population and lay the groundwork for future research into the intricate interplay of genetics, intrauterine exposures and early-life experiences in shaping long-term health.


Assuntos
Estudos de Coortes , Interação Gene-Ambiente , Variação Genética , Genoma Humano , Fenótipo , Efeitos Tardios da Exposição Pré-Natal , Adulto , Feminino , Humanos , Lactente , Recém-Nascido , Ácidos e Sais Biliares/metabolismo , China/etnologia , Cordocentese , Feto/embriologia , Ganho de Peso na Gestação , Lipídeos/sangue , Exposição Materna , Parto , Estudos Prospectivos , Genoma Humano/genética , Variação Genética/genética
14.
Nature ; 625(7996): 813-821, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172637

RESUMO

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Metagenoma , Humanos , Acetilgalactosamina/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Coortes , Simulação por Computador , Faecalibacterium prausnitzii/genética , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Técnicas In Vitro , Metagenoma/genética , Família Multigênica , Países Baixos , Tanzânia
15.
Cell Genom ; 4(2): 100497, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295789

RESUMO

Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual species, which limits its scope to relatively intact TE sequences. Here, we report a novel approach to uncover previously unannotated degenerate TEs (degTEs) by probing multiple ancestral genomes reconstructed from hundreds of species. We applied this method to the human genome and achieved a 10.8% increase in coverage over the most recent annotation. Further, we discovered that degTEs contribute to various cis-regulatory elements and transcription factor binding sites, including those of a known TE-controlling family, the KRAB zinc-finger proteins. We also report unannotated chimeric transcripts between degTEs and human genes expressed in embryos. This study provides a novel methodology and a freely available resource that will facilitate the investigation of TE co-option events on a full scale.


Assuntos
Elementos de DNA Transponíveis , Sequências Reguladoras de Ácido Nucleico , Humanos , Elementos de DNA Transponíveis/genética , Genoma Humano/genética
16.
Nature ; 625(7993): 92-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057664

RESUMO

The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders1-4, but attempts to assess constraint for non-protein-coding regions have proved more difficult. Here we aggregate, process and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD)-the largest public open-access human genome allele frequency reference dataset-and use it to build a genomic constraint map for the whole genome (genomic non-coding constraint of haploinsufficient variation (Gnocchi)). We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation. As expected, the average constraint for protein-coding sequences is stronger than that for non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants that are implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, which in turn suggests that non-coding constraint can aid the identification of constrained genes that are as yet unrecognized by current gene constraint metrics. We demonstrate that this genome-wide constraint map improves the identification and interpretation of functional human genetic variation.


Assuntos
Genoma Humano , Genômica , Modelos Genéticos , Mutação , Humanos , Acesso à Informação , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Frequência do Gene , Genoma Humano/genética , Mutação/genética , Seleção Genética
18.
Nature ; 625(7996): 778-787, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081297

RESUMO

The scarcity of malignant Hodgkin and Reed-Sternberg cells hampers tissue-based comprehensive genomic profiling of classic Hodgkin lymphoma (cHL). By contrast, liquid biopsies show promise for molecular profiling of cHL due to relatively high circulating tumour DNA (ctDNA) levels1-4. Here we show that the plasma representation of mutations exceeds the bulk tumour representation in most cases, making cHL particularly amenable to noninvasive profiling. Leveraging single-cell transcriptional profiles of cHL tumours, we demonstrate Hodgkin and Reed-Sternberg ctDNA shedding to be shaped by DNASE1L3, whose increased tumour microenvironment-derived expression drives high ctDNA concentrations. Using this insight, we comprehensively profile 366 patients, revealing two distinct cHL genomic subtypes with characteristic clinical and prognostic correlates, as well as distinct transcriptional and immunological profiles. Furthermore, we identify a novel class of truncating IL4R mutations that are dependent on IL-13 signalling and therapeutically targetable with IL-4Rα-blocking antibodies. Finally, using PhasED-seq5, we demonstrate the clinical value of pretreatment and on-treatment ctDNA levels for longitudinally refining cHL risk prediction and for detection of radiographically occult minimal residual disease. Collectively, these results support the utility of noninvasive strategies for genotyping and dynamic monitoring of cHL, as well as capturing molecularly distinct subtypes with diagnostic, prognostic and therapeutic potential.


Assuntos
DNA Tumoral Circulante , Genoma Humano , Genômica , Doença de Hodgkin , Humanos , Doença de Hodgkin/sangue , Doença de Hodgkin/classificação , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/genética , Mutação , Células de Reed-Sternberg/metabolismo , Microambiente Tumoral , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Análise da Expressão Gênica de Célula Única , Genoma Humano/genética
19.
20.
Nat Genet ; 56(1): 143-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123640

RESUMO

Long DNA segments shared between two individuals, known as identity-by-descent (IBD), reveal recent genealogical connections. Here we introduce ancIBD, a method for identifying IBD segments in ancient human DNA (aDNA) using a hidden Markov model and imputed genotype probabilities. We demonstrate that ancIBD accurately identifies IBD segments >8 cM for aDNA data with an average depth of >0.25× for whole-genome sequencing or >1× for 1240k single nucleotide polymorphism capture data. Applying ancIBD to 4,248 ancient Eurasian individuals, we identify relatives up to the sixth degree and genealogical connections between archaeological groups. Notably, we reveal long IBD sharing between Corded Ware and Yamnaya groups, indicating that the Yamnaya herders of the Pontic-Caspian Steppe and the Steppe-related ancestry in various European Corded Ware groups share substantial co-ancestry within only a few hundred years. These results show that detecting IBD segments can generate powerful insights into the growing aDNA record, both on a small scale relevant to life stories and on a large scale relevant to major cultural-historical events.


Assuntos
DNA Antigo , Genoma Humano , Humanos , Genótipo , Genoma Humano/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...